Gemcitabine-induced heparanase promotes aggressiveness of pancreatic cancer cells via activating EGFR signaling
نویسندگان
چکیده
Pancreatic cancer (PC), characterized by aggressive local invasion and metastasis, is one of the most malignant cancers. Gemcitabine is currently used as the standard drug for the treatment of advanced and metastatic PC, but with limited efficacy. In this study, we demonstrated that gemcitabine increased the expression of heparanase (HPA1), the only known mammalian endoglycosidase capable of cleaving heparan sulfate, both in vitro and in vivo. Furthermore, overexpression of HPA1 in PC cell lines enhanced proliferation and invasion, accompanied with elevated phosphorylation of EGFR. In addition, we showed that the NF-κB pathway mediated the gemcitabine-induced HPA1 expression. Importantly, we found that an HPA1 inhibitor attenuated gemcitabine-induced invasion of PC cells. Finally, we showed that HPA1 was of negative prognostic value for PC patients. Taken together, our results demonstrated that gemcitabine-induced HPA1 promotes proliferation and invasion of PC cells through activating EGFR, implying that HPA1 may serve as promising therapeutic target in the treatment of PC.
منابع مشابه
Gemcitabine enhances cell invasion via activating HAb18G/CD147-EGFR-pSTAT3 signaling
Pancreatic cancer, one of the most lethal cancers, has very poor 5-year survival partly due to gemcitabine resistance. Recently, it was reported that chemotherapeutic agents may act as stressors to induce adaptive responses and to promote chemoresistance in cancer cells. During long-term drug treatment, the minority of cancer cells survive and acquire an epithelial-mesenchymal transition phenot...
متن کاملPim-3 Regulates Stemness of Pancreatic Cancer Cells via Activating STAT3 Signaling Pathway
Due to its aggressiveness and unusual resistance to conventional therapies, pancreatic cancer is a highly lethal gastrointestinal malignancy with poor prognosis. According to the cancer stem cell hypothesis, there exists a fraction of cancer cells, that is, cancer stem cells, responsible for tumor maintenance and therapeutic failure. Herein we investigated the involvement of proto-oncogene Pim-...
متن کاملErlotinib prolongs survival in pancreatic cancer by blocking gemcitabine-induced MAPK signals.
Pancreatic ductal adenocarcinoma (PDAC) is one of the most deadly cancers worldwide. Although many regimens have been used for PDAC treatment, the combination of the EGF receptor (EGFR) inhibitor erlotinib with gemcitabine has been the only molecular-targeted drug tested so far that has been superior to gemcitabine alone. The mechanism underlying this effective combinational regimen remains unk...
متن کاملInhibition of AKT2 Enhances Sensitivity to Gemcitabine via Regulating PUMA and NF-κB Signaling Pathway in Human Pancreatic Ductal Adenocarcinoma
Invasion, metastasis and resistance to conventional chemotherapeutic agents are obstacles to successful treatment of pancreatic cancer, and a better understanding of the molecular basis of this malignancy may lead to improved therapeutics. In the present study, we investigated whether AKT2 silencing sensitized pancreatic cancer L3.6pl, BxPC-3, PANC-1 and MIAPaCa-2 cells to gemcitabine via regul...
متن کاملUltra-violet irradiation induces apoptosis via mitochondrial pathway in pancreatic cancer cells.
Pancreatic cancer is a highly lethal disease and gemcitabine is considered to be the standard of care for the treatment of advanced pancreatic cancer. However, the outcome of the patients treated with gemcitabine is still unstatisfactory and further development of new treatments is required. We recently found that short wavelength ultra-violet (UV-C) suppresses cell proliferation with downregul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017